notice

This is documentation for Rasa Documentation v2.x, which is no longer actively maintained.
For up-to-date documentation, see the latest version (3.x).

Version: 2.x

rasa.nlu.classifiers.diet_classifier

DIETClassifier Objects

class DIETClassifier(IntentClassifier, EntityExtractor)

A multi-task model for intent classification and entity extraction.

DIET is Dual Intent and Entity Transformer. The architecture is based on a transformer which is shared for both tasks. A sequence of entity labels is predicted through a Conditional Random Field (CRF) tagging layer on top of the transformer output sequence corresponding to the input sequence of tokens. The transformer output for the __CLS__ token and intent labels are embedded into a single semantic vector space. We use the dot-product loss to maximize the similarity with the target label and minimize similarities with negative samples.

__init__

| __init__(component_config: Optional[Dict[Text, Any]] = None, index_label_id_mapping: Optional[Dict[int, Text]] = None, entity_tag_specs: Optional[List[EntityTagSpec]] = None, model: Optional[RasaModel] = None, finetune_mode: bool = False, sparse_feature_sizes: Optional[Dict[Text, Dict[Text, List[int]]]] = None) -> None

Declare instance variables with default values.

label_key

| @property
| label_key() -> Optional[Text]

Return key if intent classification is activated.

label_sub_key

| @property
| label_sub_key() -> Optional[Text]

Return sub key if intent classification is activated.

preprocess_train_data

| preprocess_train_data(training_data: TrainingData) -> RasaModelData

Prepares data for training.

Performs sanity checks on training data, extracts encodings for labels.

train

| train(training_data: TrainingData, config: Optional[RasaNLUModelConfig] = None, **kwargs: Any, ,) -> None

Train the embedding intent classifier on a data set.

process

| process(message: Message, **kwargs: Any) -> None

Augments the message with intents, entities, and diagnostic data.

persist

| persist(file_name: Text, model_dir: Text) -> Dict[Text, Any]

Persist this model into the passed directory.

Return the metadata necessary to load the model again.

load

| @classmethod
| load(cls, meta: Dict[Text, Any], model_dir: Text, model_metadata: Metadata = None, cached_component: Optional["DIETClassifier"] = None, should_finetune: bool = False, **kwargs: Any, ,) -> "DIETClassifier"

Loads the trained model from the provided directory.

DIET Objects

class DIET(TransformerRasaModel)

batch_loss

| batch_loss(batch_in: Union[Tuple[tf.Tensor], Tuple[np.ndarray]]) -> tf.Tensor

Calculates the loss for the given batch.

Arguments:

  • batch_in - The batch.

Returns:

The loss of the given batch.

prepare_for_predict

| prepare_for_predict() -> None

Prepares the model for prediction.

batch_predict

| batch_predict(batch_in: Union[Tuple[tf.Tensor], Tuple[np.ndarray]]) -> Dict[Text, tf.Tensor]

Predicts the output of the given batch.

Arguments:

  • batch_in - The batch.

Returns:

The output to predict.