notice
This is unreleased documentation for Rasa Documentation Main/Unreleased version.
For the latest released documentation, see the latest version (3.x).
Version: Main/Unreleased
rasa.utils.tensorflow.callback
RasaTrainingLogger Objects
class RasaTrainingLogger(tf.keras.callbacks.Callback)
Callback for logging the status of training.
__init__
def __init__(epochs: int, silent: bool) -> None
Initializes the callback.
Arguments:
epochs
- Total number of epochs.silent
- If 'True' the entire progressbar wrapper is disabled.
on_epoch_end
def on_epoch_end(epoch: int, logs: Optional[Dict[Text, Any]] = None) -> None
Updates the logging output on every epoch end.
Arguments:
epoch
- The current epoch.logs
- The training metrics.
on_train_end
def on_train_end(logs: Optional[Dict[Text, Any]] = None) -> None
Closes the progress bar after training.
Arguments:
logs
- The training metrics.
RasaModelCheckpoint Objects
class RasaModelCheckpoint(tf.keras.callbacks.Callback)
Callback for saving intermediate model checkpoints.
__init__
def __init__(checkpoint_dir: Path) -> None
Initializes the callback.
Arguments:
checkpoint_dir
- Directory to store checkpoints to.
on_epoch_end
def on_epoch_end(epoch: int, logs: Optional[Dict[Text, Any]] = None) -> None
Save the model on epoch end if the model has improved.
Arguments:
epoch
- The current epoch.logs
- The training metrics.