Version: 3.x

rasa.core.test

WrongPredictionException Objects

class WrongPredictionException(RasaException, ValueError)

Raised if a wrong prediction is encountered.

WarningPredictedAction Objects

class WarningPredictedAction(ActionExecuted)

The model predicted the correct action with warning.

__init__

def __init__(action_name_prediction: Text,
action_name: Optional[Text] = None,
policy: Optional[Text] = None,
confidence: Optional[float] = None,
timestamp: Optional[float] = None,
metadata: Optional[Dict] = None)

Creates event action_unlikely_intent predicted as warning.

See the docstring of the parent class for more information.

inline_comment

def inline_comment(**kwargs: Any) -> Text

A comment attached to this event. Used during dumping.

WronglyPredictedAction Objects

class WronglyPredictedAction(ActionExecuted)

The model predicted the wrong action.

Mostly used to mark wrong predictions and be able to dump them as stories.

__init__

def __init__(action_name_target: Text,
action_text_target: Text,
action_name_prediction: Text,
policy: Optional[Text] = None,
confidence: Optional[float] = None,
timestamp: Optional[float] = None,
metadata: Optional[Dict] = None,
predicted_action_unlikely_intent: bool = False) -> None

Creates event for a successful event execution.

See the docstring of the parent class ActionExecuted for more information.

inline_comment

def inline_comment(**kwargs: Any) -> Text

A comment attached to this event. Used during dumping.

as_story_string

def as_story_string() -> Text

Returns the story equivalent representation.

__repr__

def __repr__() -> Text

Returns event as string for debugging.

EvaluationStore Objects

class EvaluationStore()

Class storing action, intent and entity predictions and targets.

__init__

def __init__(
action_predictions: Optional[PredictionList] = None,
action_targets: Optional[PredictionList] = None,
intent_predictions: Optional[PredictionList] = None,
intent_targets: Optional[PredictionList] = None,
entity_predictions: Optional[List["EntityPrediction"]] = None,
entity_targets: Optional[List["EntityPrediction"]] = None) -> None

Initialize store attributes.

add_to_store

def add_to_store(
action_predictions: Optional[PredictionList] = None,
action_targets: Optional[PredictionList] = None,
intent_predictions: Optional[PredictionList] = None,
intent_targets: Optional[PredictionList] = None,
entity_predictions: Optional[List["EntityPrediction"]] = None,
entity_targets: Optional[List["EntityPrediction"]] = None) -> None

Add items or lists of items to the store.

merge_store

def merge_store(other: "EvaluationStore") -> None

Add the contents of other to self.

check_prediction_target_mismatch

def check_prediction_target_mismatch() -> bool

Checks if intent, entity or action predictions don't match expected ones.

serialise

def serialise() -> Tuple[PredictionList, PredictionList]

Turn targets and predictions to lists of equal size for sklearn.

EndToEndUserUtterance Objects

class EndToEndUserUtterance(UserUttered)

End-to-end user utterance.

Mostly used to print the full end-to-end user message in the failed_test_stories.yml output file.

as_story_string

def as_story_string(e2e: bool = True) -> Text

Returns the story equivalent representation.

WronglyClassifiedUserUtterance Objects

class WronglyClassifiedUserUtterance(UserUttered)

The NLU model predicted the wrong user utterance.

Mostly used to mark wrong predictions and be able to dump them as stories.

__init__

def __init__(event: UserUttered, eval_store: EvaluationStore) -> None

Set predicted_intent and predicted_entities attributes.

inline_comment

def inline_comment(force_comment_generation: bool = False) -> Optional[Text]

A comment attached to this event. Used during dumping.

inline_comment_for_entity

@staticmethod
def inline_comment_for_entity(predicted: Dict[Text, Any],
entity: Dict[Text, Any]) -> Optional[Text]

Returns the predicted entity which is then printed as a comment.

as_story_string

def as_story_string(e2e: bool = True) -> Text

Returns text representation of event.

emulate_loop_rejection

def emulate_loop_rejection(partial_tracker: DialogueStateTracker) -> None

Add ActionExecutionRejected event to the tracker.

During evaluation, we don't run action server, therefore in order to correctly test unhappy paths of the loops, we need to emulate loop rejection.

Arguments:

  • partial_tracker - a :class:rasa.core.trackers.DialogueStateTracker

test

async def test(stories: Text,
agent: "Agent",
max_stories: Optional[int] = None,
out_directory: Optional[Text] = None,
fail_on_prediction_errors: bool = False,
e2e: bool = False,
disable_plotting: bool = False,
successes: bool = False,
errors: bool = True,
warnings: bool = True) -> Dict[Text, Any]

Run the evaluation of the stories, optionally plot the results.

Arguments:

  • stories - the stories to evaluate on
  • agent - the agent
  • max_stories - maximum number of stories to consider
  • out_directory - path to directory to results to
  • fail_on_prediction_errors - boolean indicating whether to fail on prediction errors or not
  • e2e - boolean indicating whether to use end to end evaluation or not
  • disable_plotting - boolean indicating whether to disable plotting or not
  • successes - boolean indicating whether to write down successful predictions or not
  • errors - boolean indicating whether to write down incorrect predictions or not
  • warnings - boolean indicating whether to write down prediction warnings or not

Returns:

Evaluation summary.

compare_models_in_dir

async def compare_models_in_dir(
model_dir: Text,
stories_file: Text,
output: Text,
use_conversation_test_files: bool = False) -> None

Evaluates multiple trained models in a directory on a test set.

Arguments:

  • model_dir - path to directory that contains the models to evaluate
  • stories_file - path to the story file
  • output - output directory to store results to
  • use_conversation_test_files - True if conversation test files should be used for testing instead of regular Core story files.

compare_models

async def compare_models(models: List[Text],
stories_file: Text,
output: Text,
use_conversation_test_files: bool = False) -> None

Evaluates multiple trained models on a test set.

Arguments:

  • models - Paths to model files.
  • stories_file - path to the story file
  • output - output directory to store results to
  • use_conversation_test_files - True if conversation test files should be used for testing instead of regular Core story files.